Constant Mean Curvature Surfaces of Any Positive Genus
نویسندگان
چکیده
We show the existence of several new families of non-compact constant mean curvature surfaces: (i) singly-punctured surfaces of arbitrary genus g ≥ 1, (ii) doubly-punctured tori, and (iii) doubly periodic surfaces with Delaunay ends.
منابع مشابه
Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve
3 is the boundary of two spherical caps of constant mean curvature H for any positive number H, which is at most the radius of C. It is natural to ask whether spherical caps are the only possible examples. Some examples of constant mean curvature immersed tori by Wente [7] indicate that there are compact genus-one immersed constant mean curvature surfaces with boundary C that are approximated b...
متن کامل- Spaces
We show existence of constant mean curvature 1 surfaces in both hyperbolic 3-space and de Sitter 3-space with two complete embedded ends and any positive genus up to genus twenty. We also find another such family of surfaces in de Sitter 3-space, but with a different non-embedded end behavior.
متن کاملConstant Mean Curvature Surfaces with Two Ends in Hyperbolic Space
We investigate the close relationship between minimal surfaces in Euclidean 3-space and constant mean curvature 1 surfaces in hyperbolic 3-space. Just as in the case of minimal surfaces in Euclidean 3-space, the only complete connected embedded constant mean curvature 1 surfaces with two ends in hyperbolic space are well-understood surfaces of revolution – the catenoid cousins. In contrast to t...
متن کاملCoplanar Constant Mean Curvature Surfaces
We consider constant mean curvature surfaces with finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors [GKS2, GKS1]. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane...
متن کاملHyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005